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The puzzle

• Measure charge radius of the proton different ways, 
get different answers 

• Difference is 7 s.d.  
(was 5 s.d. when first announced, 2010) 

• Why?  Don’t yet know.
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This talk
1. The measurements:   

where the differences came from 

2. Suggested explanations 

A. Ordinary explanations 

• Maybe some things are harder than they seem 

B. Exotic explanations 

• Will discuss: Is it Physics Beyond the Standard Model?  

• Will mention: other possibilities (later) 

3. Highlight: List of coming relevant data
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Measuring proton radius
• Two methods: scattering or atomic spectroscopy 

• Two probes: electrons or muons 

• I.e.,   
• e-p elastic scattering 
• µ-p elastic scattering 
• spectroscopy of electronic Hydrogen  
• spectroscopy of muonic Hydrogen 

• 4 categories of measurements, 3 done with sufficient 
accuracy (and more data coming), µ-p scattering coming
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e-p scattering
• Measure differential cross section, fit results to form 

factors,  
 
 
 

• Low Q2, mainly sensitive to GE. 

• Extrapolate to Q2 = 0, whence 
 

6

ds

dW
µ G2

E(Q
2) +

t

e
G2

M(Q2)

h
t = Q2/4m2

p ; 1/e = 1 + 2(1 + t) tan2(qe/2)
i

R2
E = �6

⇣
dGE/dQ2

⌘

Q2=0



Extra: What is the proton radius?

By this I mean, what is the definition?


NR, easy.  Given w. f., obtain RMS radius,   
 
 

In concept, obtaining proton radius by electron 
scattering same as obtaining radius of H-atom w. f. 
by scattering an external electron off the bound 
electron.  Worked out by Bethe in 1930’s


Rutherford scattering cross section off pointlike 
target,
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More extra: Def’n of proton radius

is modified for scattering off extended target, but 
just becomes 
 
 

Q = momentum transfer in scattering


G(Q2) is “form factor”, given NR by  
 

easy:  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Low-Q2 scattering data
• Most extensive current data comes from Mainz, which has an 

electron accelerator, and is also city of Gutenberg  
 
 
 
 
 
 
 

• Data, Jan Bernauer et al., PRL 2010 (and later articles). 

• marked by low Q2 data, range 0.004 to 1 GeV2 
• From their analysis,
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RE = 0.879(8) fm



Atomic energy level splittings
• Basic: Schrödinger equation, H-atom, point protons 

• plus QED corrections 

• plus finite size proton, pushing energy upward a bit.  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measure energy accurately  
⟺ measure radius

• Reminder, H-atom energy levels (diagram not to scale)
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Atomic results
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All electron results

• Consistent 

• Combined by Committee on Data in Science and 
Technology (CODATA, 2014 value),
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RE = 0.8751(61) fm



Then in 2010 …
• CREMA = Charge Radius Experiment with Muonic Atoms 
 
 
 
 
 
 

• Did atomic physics, specifically Lamb shift, with muons  
(muon = electron, but weighs 200 times more, orbits 200 times 
closer). 

• Goal: measure proton radius with factor 10 smaller uncertainty
14



CREMA
• 2S-2P Lamb shift in µ-H. 
• Measured two lines,  
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ca. 206 meV
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F=1

F=0

finite size effect
3.7 meV HFS  23 meV

FS 8.4 meV
2P3/2 

2P1/2

2S1/2

• pubs: 
upper line, Pohl et al., Nature 
2010  
other line Antognini et al., 
Science 2013

• Interpreting finite size effect in terms of proton radius,  

• Whoops: result 4% or 7σ small
RE = 0.84087(39) fm



Other data-deuteron
• Reported at conferences 2013 

• 2015 experimenters circulate draft of theory paper! 

• Measured three lines
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• Quick summary: if proton 
radius is shrunken, the 
deuteron radius is also.



Other data — Helium

• New 2013/2014 data 

• µ-4He at Mainz Proton Radius Workshop, 2014 

• µ-3He at Gordon Conference, N.H., 2014 

• Quick summary:  He radii from µ Lamb shift in 
accord with electron scattering radii.
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Explanations?
• Hard to see problems with µ experiment 

• Hard to get working 
• But once working, easy to analyze 

• Problems with analysis of electron experiments? 
But there are a lot of them. 

• BSM explanations? 

• If so, further tests?
18



Review e-p scattering data
• Point: Measurements at finite Q2.  Need to extrapolate to Q2 = 0 to 

obtain charge radius.  (Mainz group itself: RE = 0.879(8) fm.) 

• Because of importance, others have tried, using different ways of 
fitting data.  Three recent fits found “big” values: 

• Graczyk & Juszczak (2014), using Bayesian ideas and pre-Mainz 
world data, obtained 
                           RE = 0.899(3) fm. 

• Lee, Arrington, & Hill (2015) using Mainz data and neat mapping 
ideas to ensure convergence of expansions, obtained  
                            RE = 0.895(20) fm. 

• Arrington & Sick (2015) found 
                             RE = 0.879(11) fm.
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But…
• Several recent fits found “small” values (i.e., compatible 

with muonic Lamb shift experiment): 

• Lorenz, Meißner, Hammer, & Dong (2015 and earlier), 
dispersive ideas, also using timelike data, obtained 
                    RE = 0.840(15) fm. 

• Horbatsch and Hessels (1509.05644) 

• Carlson, Griffioen, Maddox (1509.06676) 

• Higinbotham, Kabir, Lin, Meekins, Norum, Sawatzky 
(1510.01293) 
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Recent e-p analyses, I
• Maddox et al. (1509.06676) 

• First viewpoint: Charge radius is a Q2 = 0 concept, should be 
able to obtain just from low Q2 data. 

• Technical: Form factor is analytic function of Q2, except for 
cut starting at 4mπ

2.  Hence, polynomial expansion in Q2 
converges for Q2 < 4mπ

2. 

• For low Q2 data, use 
Q2 < 0.02 GeV2  
(243 data points)  
linear plus quadratic in Q2 , 
get RE = 0.850(19) fm
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Recent e-p analyses, I
• Second viewpoint: fitting whole Q2 data range with 

complicated (i.e., many parameters) function leads 
to dangers in extrapolation. 

• Fit whole Mainz 2010 data set  
with simpler functions (i.e., 4  
or so parameters), that extra-  
polate more reliably.  From  
collection of such fits quote  
          
        RE = 0.840(16) fm
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Recent e-p analyses, II
• Higinbotham, Kabir, Lin, Meekins, Norum, Sawatzky 

(1510.01293)  

• Also emphasized use of low Q2 range data. 

• Additional contribution: resurrecting Saskatoon 1974 and 
Mainz 1980 data.  Excellent data.  Q2 < 0.031  and < 0.055 
GeV2, resp. 

• Excellent discussion of statistics relevant to deciding how 
many parameters to use.  Argued for reliability of even linear 
fits in this data range. 

• Obtained RE compatible with muonic atomic data, 0.84 fm
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Recent e-p analyses, III
• Horbatsch and Hessels (1509.05644) 

• Also believe “the rms charge radius of the proton is a 
small-Q2 concept. Thus, if possible, it should be 
determined from low-Q2 data.” 

• Look at Mainz 2010 data restricting Q2 < 0.1 GeV2.  
Analyze two ways, get bifurcated result.  

• their take-away conclusion: scattering data can’t help 

• proton radius problem remains, but between electron 
atomic physics and muon atomic physics
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H. H.
• dipole fit: GE = (1 + RE2 Q2 /12)-2, similarly for GM 

• Got RE = 0.842(2) fm  and  RM = 0.800(2) fm 

• Fits look o.k.
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H. H.
• z variable expansion,  

• reason: for functions like GE, polynomial expansion 
in z converges for all 0 < z < 1, i.e., all spacelike Q2 

• Expansion linear in z,   

• Now got RE =  0.888(1) fm  and   RM = 0.874(2) fm
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H. H.
• Fit looks not good 

• This is Q2 < 0.1 GeV2 data 

• Concavity when plotted in this  
variable not well fit by linear  
polynomial 

• Overly large RE not surprise 

• (Plot is mine; theirs would look better, but principal problem 
remains.  Can explain.) 

• My take-away 1: should include z2 term if doing this way. 
My result when doing so is  RE = 0.838 fm. 

• My take-away 2:  low RE o.k., high RE not o.k.
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Scattering future
• A: Continue discussing statistics and extrapolations 

• B: Do further experiments to lower lowest Q2, and also do µ scattering 

• 1: PRad at JLab:  Just target and detector screen, allowing very small 
scattering angles.  Anticipate Q2|low ≈ 0.0002 GeV2.  Running now! 

• 2: ISR (Initial State Radiation) at Mainz.  Photon radiation 
takes energy out of electron, allowing lower Q at given 
scattering angle.  Anticipate Q2|low ≈ 0.0001 GeV2.  Data 
taken, more data to be taken; under analysis. 

• 3: MUSE = Muon scattering experiment at the PSI. Anticipate  
Q2|low ≈ 0.002 GeV2.  Production runs 2017/2018.
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Back to atomic spectroscopy

• Same plot, but µ-H value added 

• Possible: correlated systematic errors.  There are more 
measurements than independent expt’l groups.
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Short term future
• Several independent groups are doing more precise experiments. The first 

3 (at least) can individually get the proton radius to under 1%. 

• York University (Canada): Ordinary hydrogen 2S-2P Lamb shift 
(“We have run into some systematic effects that we want to understand better”) 

• MPI Quantum Optics (Garching): 2S-4P transition 
(“…about 2S-4P: things are progressing great, but you haven't missed anything concerning publications. I will be happy to let you know as soon 
as there is some news from our side.”) 

• Laboratoire Kastler Brossel (Paris): 1S-3S transition 
(“…In parallel, we have another failure with a RF amplifier, we put another which has failed after one week… We are fighting with a little bit of luck 
I hope to get a result for 1S-3S before the end of this year.”) 

• NIST (USA): Measure Rydberg using “Rydberg” states, very high n states, 
uncontaminated by proton size.  (Very relevant: recall previous discussion.) 

• + National Physical Lab (U.K.), several 2S–nS,D transitions 

•  Under way, may see results soon. Will be important, one way or another.
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Exotic possibilities
• Breakdown of Lorentz invariance? (Gomes, Kostelecky, & Vargas, 2014) 
• Unanticipated QCD corrections? (G. Miller, 2013) 
• Higher-dimensional gravity(?) (1509.08735, Dahia and Lemos) 
• Renormalization group effects for effective particles (Glazek, 2014) 

• Will consider breakdown of muon-electron universality. New particle 
coupling to muons and protons.  Small or no coupling to other particles. 

• References (optimistic or neutral): Tucker-Smith & Yavin (2011), Batell, 
McKeen, & Pospelov (2011), Brax & Burrage (2011), Rislow & Carlson 
(2012, 2014), Marfatia & Keung (2015), Pauk & Vanderhaeghen (2015) 

• References (pessimistic): Barger, Chiang, Keung, Marfatia (2011, 2012), 
Karshenboim, McKeen, & Pospelov (2014)
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µ-H Lamb shift
• Point: Experimenters do not directly measure 

proton radius.  Measure energy deficit, 310 µeV.  
Interpret as proton radius deficit. 

• Idea: Proton radius unchanged.  Energy deficit due 
to new force, carried by exchange of new particle.  

• New particle is scalar or vector.  Pseudoscalar or 
axial vector have little effect on Lamb shift for 
similar couplings. 
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Energy shift
• e.g., scalar case  
 
 
 
 
 

• Pick CSµ CSp to give  
320 µeV for given m𝜙. 
(Plot for CSµ = CSp.)
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Other muon processes
• Worry about other processes where new particle 

couples to muons.  First: 

• Loop corrections to µ magnetic moment 

• (Reminder: 3 σ discrepancy between measured 
and standard model calculated (g-2)µ.) 

• If new exchange particle light, effect on (g-2)µ 
small enough (Tucker-Smith & Yavin).  Otherwise, 
need to fix by fine tuning.
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Fixing (g-2)µ

• Will need extra particle and fine tuning 

• Lucky break: corrections to (g-2) from regular 
vector and axial vector have opposite sign.  
Same is true of scalar and pseudoscalar. 

• With extra particle, have new coupling, say CPi.  Choose 
coupling to cancel in (g-2)µ.  Does not much affect Lamb 
shift. 

• Couplings now fixed, albeit mass sensitive.  Hence 
predictions for other processes fixed.
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(Fine tuning plot)
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• Low enough mass, cancellation not needed (TSY) 

• Couplings now fixed, albeit mass sensitive. 

• ∴ Predictions for other processes now fixed.



BSM problems

1. Radiative corrections to W-decay 

2. Non-effect in He
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W decay
• Remark of Karshenboim, 

McKeen, and Pospelov: fast 
growth with energy of 
amplitudes involving massive 
vector particles 

• If light new particle 𝝓 or V 
coupling to muon, it gives large 
radiative correction to W decay 
via W→𝝁𝝂V, larger than 
measured error in W decay rate.
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appear to need only one. Further note the di⇤erent signs
of the Cµ

V and Cµ
A Yang-Mills terms necessary for gauge

invariance, and that we have included an interaction of
the Ws with the charge changing muon current.

If the Cµ
V and Cp

V have the opposite sign then there
exists an additional attractive force between the muon
and the proton through the interaction with the ⌥V . This
additional force will create a di⇤erence between the 2S-
2P Lamb shift in muonic hydrogen and hydrogen as [10–
12]

⇥E(2S-2P ) = � |C
µ
V Cp

V |
4⌃

m2
⇧(mr�)3

2(m⇧ + mr�)4
(3)

where mr is the reduced mass of the (muonic) hydrogen
system. The contribution to ⇥E(2S-2P ) from the axial
coupling Cµ

A is very small.

To account for the energy di⇤erence that can be inter-
preted as a proton radius di⇤erence, there must be an
extra 310µeV in the 2S-2P Lamb shift of muonic hydro-
gen [1, 2]. The parameter CV necessary to satisfy this
constraint is plotted as the green band outlined by solid
lines in Fig. 3 where |Cµ

V | = |Cp
V | = CV .

Furthermore, the introduction of new ⌥V and ⌥A in-
teractions with the muon will shift the muon anomalous
magnetic moment. The vector and axial vector couplings
a⇤ect the anomalous moment with opposite signs and can
be tuned to account for the known discrepancy between
theory and experiment of muonic g � 2 [12]. If Cµ

V is set
to satisfy the proton radius problem, then the allowed
region for Cµ

A from the muon g � 2 constraint is shown
by the green band outlined by dashed lines in Fig. 3.

We now move on to consider a constraint emphasized
by Karshenboim et al. [15], that the branching ratio of
W ⇤ µ⇧⌥V plus W ⇤ µ⇧⌥A must be less than 4 per-
cent (twice the error in the W width as measured by the
Tevatron). Without the inclusion of a 3-boson interac-
tion, this constraint eliminates the region of the (Cµ

V ,m⇧)
parameter space required to explain the proton radius
puzzle. This decay is calculated from the Feynman dia-
grams given in Fig. 2.

W
⇥

µ

µ

⇤ +
W

⇥

⇤
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µ

FIG. 2: W � µ⇥⇤

From (1) we can derive the necessary Feynman rules
to compute this decay amplitude as

iM =
iCµ

V gW

2
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where k is the W 4-momentum, p1 is the muon 4-
momentum, p2 is the neutrino 4-momentum, and p3 is
the ⌥V 4-momentum. Here we have focused on the vec-
tor contribution to the W decay, but one can easily show
that the axial vector contribution is equivalent up to an
overall minus sign (which is irrelevant to the decay am-
plitude squared).

Letting the muon and neutrino mass be zero, we find
(to leading order in m⇧/mW )
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GF m3
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Keeping the muon mass would only give multiplicative
corrections to the coe⇧cients like (1 +O(m2

µ/m2
W )).

This decay width has a strikingly di⇤erent dependence
on m⇧ compared to [15]. The 1/m2

⇧ dependence found
there that came from the longitudinal component of the ⌥
polarization is canceled by the inclusion of the Ws prop-
agator in the second diagram of Fig. 2. Thus at lead-
ing order in m⇧/mW , the mass divergence is logarithmic
and not inverse polynomial. This logarithmic dependence
pushes the constraints from W decay far away from the
desired parameter space of Cµ

V and m⇧.
The contribution of Cµ

A in (5) can be obtained in terms
of Cµ

V using the constraint from (g � 2)µ [12]. The con-
straint from W decay eliminates the region of (Cµ

V ,m⇧)
above the top curve, the shaded red area, in Fig. 3. The
values of Cµ

V below this area are allowed by this con-
straint.

Another constraint on Cµ
V occurs from transitions be-

tween 3d and 2p orbitals in muonic 24Mg and 28Si [13,
15, 22]. At two standard deviations, this constraint is
plotted as the shaded orange area bordered below by a
solid black line in Fig. 3 where allowed values of Cµ

V exist
on and below this line.

Note that an additional constraint due to muonium
hyperfine splitting discussed in [15] is not relevant here
since ⌥ does not couple to the electron (or the coupling
can be kept quite small). For similar reasons, we do not
have a constraint on Cµ

A from a new parity nonconserv-
ing interaction contributing to the weak charge in 133Cs,



W decay
• Reminiscent of (from early days of W.S. model),
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2

and Schroeder [18], an amplitude in a single partial wave
must not grow with energy at high energy (i.e., if the
amplitude grows like (energy)n for large energies, then
n ⇥ 0). Nonrenormalizable theories are known for their
ultraviolet divergences in loops, but their excessive en-
ergy dependence can also appear at tree level in the form
of unitarity violations. A known historical example is
the amplitude for ⌅e⌅̄e ⇤W+W� in a simple vector bo-
son theory [19]. The calculation from just diagram 1(a)
gives an amplitude that is asymptotically in a single par-
tial wave that grows like E2 as the center-of-mass energy
E ⇤ ⇧. The Weinberg-Salam extension of the theory
also has a Z-boson diagram, 1(b), which is significantly
smaller than 1(a) at threshold but asymptotically cancels
the o�ending energy behavior and restores perturbative
unitarity [20]. A general study by Llewellyn Smith has
shown that the need to satisfy unitarity bounds leads to
a Yang-Mills structure for many theories involving vector
bosons [21].

(a)

�e

�̄e W�

W+

e� +

(b)

�e

�̄e
Z

W�

W+

FIG. 1: The illustrative process ��̄ �W+W�.

In this paper, we consider new vector and (when
needed) axial-vector bosonic interactions that couple to
the muon and the proton but do not couple or couple
weakly to the electron and most other particles. Again, if
this is all we have, the result of Karshenboim et al. shows
that the region of parameter space which solves the pro-
ton radius problem does not occur in the allowed param-
eter space given by the known decay of the W . Inspired
by [20, 21], we add an additional triple boson vertex in
the Lagrangian, giving an interaction involving the stan-
dard W -boson, the new vector particle ⇧V , and a fur-
ther vector boson with the same mass as the W . We
call this newest boson a “shadow W ,” denoted Ws with
m(Ws) = mW . We also include, when needed, a corre-
sponding axial vector triple boson interaction, involving
the shadow Ws, the ordinary W , and the ⇧A. The inclu-
sion of the Ws makes the ⇧ interactions gauge invariant
or current conserving, arguably fixes the nonrenormaliz-
ability of the original interaction, and, as we shall show,
definitively pushes the constraints on the couplings due
to W decay far away from the coupling strength param-
eter region necessary to solve the proton radius problem.
Thus it can be a plausible candidate for a BSM solution
to the proton radius problem.

We note that a current conserving theory with mas-
sive bosons (⇧V and ⇧A) and shadow W ’s, gives high
energy results, e.g. for radiative corrections to W decay,
very much like a theory with a massive scalar boson ⇧s

plus, when needed, a corresponding pseudoscalar boson

⇧p. We briefly display such a scalar theory, and show
that decays of the W involving such a scalar and pseu-
doscalar do not restrict the necessary parameter space
needed for solving the proton radius problem with scalar
exchanges.

We should also note that though our theory is well-
behaved and seems likely to be renormalizable (as argued
by Llewelyn Smith [21]), it is not yet a full theory em-
bedded into the standard model (SM). Further work will
be required to show how such a theory can be embed-
ded into the SM. For now, we simply consider our theory
as a phenomenological application of some BSM physics,
containing features that a full theory must contain and
controlling the high energy behavior of scattering and
decay amplitudes.

In the following, the bulk of our work concerns the
new vector or axial vector bosons, and is described in
Sec. II. We also include some comments on why the cor-
responding radiative corrections to Z ⇤ µ+µ� decay are
innocuous. Results for the scalar case are given in a short
Sec. III, and conclusions are o�ered in Sec. IV.

II. VECTOR THEORY

We start with an interaction Lagrangian similar to [12]
where ⇧V interacts with a muon (and proton) via the the
explicit vector coupling Cµ

V (Cp
V ) and where ⇧A interacts

with a muon (and proton) through the axial vector cou-
pling Cµ

A (Cp
A). For brevity of notation, it is understood

that ⇧ without a subscript represents either ⇧V or ⇧A in
this section. We also include an additional 3-boson inter-
action [21] term involving the ⇧, the ordinary W , and a
third boson, with coupling strength equal to Cµ

V (or Cµ
A)

as is necessary to make the decay W ⇤ µ⌅⇧ gauge in-
variant. The third boson is the shadow W , denoted Ws,
which couples to the muon in the same manner as the W
and has mWs = mW .

The new interaction terms in the Lagrangian are,

Lint =� ⇧V
⇤

�
Cµ

V ⌃̄µ�⇤⌃µ + Cp
V ⌃̄p�

⇤⌃p

⇥

� ⇧A
⇤

�
Cµ

A⌃̄µ�⇤�5⌃µ + Cp
A⌃̄p�

⇤�5⌃p

⇥

� iCµ
V ⇥ijkW i

�W j
⇥ ��W k,⇥ + i {Cµ

A terms}

� g

2
 

2
⌃̄µ�⇤(1� �5)⌃⇧ W�

s,⇤ + h.c. , (1)

where in the Cµ
V terms,

W 1
� ⌅W�

� ,

W 2
� ⌅W+

s,� ,

W 3
� ⌅ ⇧V

� , (2)

with V ⇤ A for the Cµ
A terms; ⇥ijk is the totally anti-

symmetric Levi-Civita symbol. Note that we could use
two shadow W ’s (one vector and one axial vector), but

• Left diagram grew unpleasantly at high energy, 
right diagram cancelled it at high energy, was small 
at lower energy



Here
• Should have interaction also with W to make theory 

renormalizable.
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appear to need only one. Further note the di⇤erent signs
of the Cµ

V and Cµ
A Yang-Mills terms necessary for gauge

invariance, and that we have included an interaction of
the Ws with the charge changing muon current.

If the Cµ
V and Cp

V have the opposite sign then there
exists an additional attractive force between the muon
and the proton through the interaction with the ⌥V . This
additional force will create a di⇤erence between the 2S-
2P Lamb shift in muonic hydrogen and hydrogen as [10–
12]

⇥E(2S-2P ) = � |C
µ
V Cp

V |
4⌃

m2
⇧(mr�)3

2(m⇧ + mr�)4
(3)

where mr is the reduced mass of the (muonic) hydrogen
system. The contribution to ⇥E(2S-2P ) from the axial
coupling Cµ

A is very small.

To account for the energy di⇤erence that can be inter-
preted as a proton radius di⇤erence, there must be an
extra 310µeV in the 2S-2P Lamb shift of muonic hydro-
gen [1, 2]. The parameter CV necessary to satisfy this
constraint is plotted as the green band outlined by solid
lines in Fig. 3 where |Cµ

V | = |Cp
V | = CV .

Furthermore, the introduction of new ⌥V and ⌥A in-
teractions with the muon will shift the muon anomalous
magnetic moment. The vector and axial vector couplings
a⇤ect the anomalous moment with opposite signs and can
be tuned to account for the known discrepancy between
theory and experiment of muonic g � 2 [12]. If Cµ

V is set
to satisfy the proton radius problem, then the allowed
region for Cµ

A from the muon g � 2 constraint is shown
by the green band outlined by dashed lines in Fig. 3.

We now move on to consider a constraint emphasized
by Karshenboim et al. [15], that the branching ratio of
W ⇤ µ⇧⌥V plus W ⇤ µ⇧⌥A must be less than 4 per-
cent (twice the error in the W width as measured by the
Tevatron). Without the inclusion of a 3-boson interac-
tion, this constraint eliminates the region of the (Cµ

V ,m⇧)
parameter space required to explain the proton radius
puzzle. This decay is calculated from the Feynman dia-
grams given in Fig. 2.

W
⇥

µ

µ

⇤ +
W

⇥

⇤

Ws

µ

FIG. 2: W � µ⇥⇤

From (1) we can derive the necessary Feynman rules
to compute this decay amplitude as

iM =
iCµ

V gW

2
⌥

2
⇤�(k)⇤�⇥(p3)ū(p1)

⌥
⇥⇥(/p1

+ /p3
)

(p1 + p3)2
⇥�(1� ⇥5)

� ⇥µ(1� ⇥5)

⇧
gµ⌅ � (p1+p2)µ(p1+p2)⇥

m2
W

(p1 + p2)2 �m2
W

⌃

⇥
⇤
g�⇥(k + p3)⌅ + g⇥⌅(�p3 + p1 + p2)�

+ g�⌅(�p1 � p2 � k)⇥
⌅�

⇧(p2) (4)

where k is the W 4-momentum, p1 is the muon 4-
momentum, p2 is the neutrino 4-momentum, and p3 is
the ⌥V 4-momentum. Here we have focused on the vec-
tor contribution to the W decay, but one can easily show
that the axial vector contribution is equivalent up to an
overall minus sign (which is irrelevant to the decay am-
plitude squared).

Letting the muon and neutrino mass be zero, we find
(to leading order in m⇧/mW )

�W =
GF m3

W

�
(Cµ

V )2 + (Cµ
A)2

⇥

96
⌥

2⌃3

⇥
⌥

log2 m2
W

m2
⇧

� 5 log
m2

W

m2
⇧

+
37
3
� ⌃2

3

�
. (5)

Keeping the muon mass would only give multiplicative
corrections to the coe⇧cients like (1 +O(m2

µ/m2
W )).

This decay width has a strikingly di⇤erent dependence
on m⇧ compared to [15]. The 1/m2

⇧ dependence found
there that came from the longitudinal component of the ⌥
polarization is canceled by the inclusion of the Ws prop-
agator in the second diagram of Fig. 2. Thus at lead-
ing order in m⇧/mW , the mass divergence is logarithmic
and not inverse polynomial. This logarithmic dependence
pushes the constraints from W decay far away from the
desired parameter space of Cµ

V and m⇧.
The contribution of Cµ

A in (5) can be obtained in terms
of Cµ

V using the constraint from (g � 2)µ [12]. The con-
straint from W decay eliminates the region of (Cµ

V ,m⇧)
above the top curve, the shaded red area, in Fig. 3. The
values of Cµ

V below this area are allowed by this con-
straint.

Another constraint on Cµ
V occurs from transitions be-

tween 3d and 2p orbitals in muonic 24Mg and 28Si [13,
15, 22]. At two standard deviations, this constraint is
plotted as the shaded orange area bordered below by a
solid black line in Fig. 3 where allowed values of Cµ

V exist
on and below this line.

Note that an additional constraint due to muonium
hyperfine splitting discussed in [15] is not relevant here
since ⌥ does not couple to the electron (or the coupling
can be kept quite small). For similar reasons, we do not
have a constraint on Cµ

A from a new parity nonconserv-
ing interaction contributing to the weak charge in 133Cs,

• Problem ameliorated (see Freid and me (2015))



Helium Lamb shift
• A pair (3He & 4He) of non-contradictory results. 

• He radii measured in electron scattering, to about 
1/4%.  These radii go into prediction for Lamb shift. 

• Preliminary data on µ-He Lamb shift agrees with 
prediction, to about 1σ.  If due to heavy BSM 
particle exchange, should disagree by about 5σ. 

• How does mass creep in?
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Heavy atom Lamb shift
• Physics:  Range of potential is controlled by mass.  

Light mass, long range, like Coulomb potential, 
does not split S and P states. 

• Application: Z=2 helium has orbital muons closer to 
nucleus than Z=1 hydrogen.  What looks like long 
range to helium is short range to hydrogen, if mass 
chosen correctly. 

• Quick bottom line: Get result for proton big enough 
and for He small enough if m𝜙 ≈ 1 MeV.
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New force seen elsewhere?
• Older suggestion: correction  

to K-decay,  viz., K →µ 𝜈 e+e–  
as correction to K →µ 𝜈. 

• Of course, QED gives same final state, with smooth 
(calculable) spectrum of e+e-. 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𝜑 visible?
• 𝜑 (new BSM particle) 

will give bump.  Size  
calculable.  

• Is it observable?  
Wow, Yes.  (If it exists.)  
[Red = QED background,  
 solid = bump from 𝜑] 

• Note: TREK experiment (E36) at JPARC (Japan) will observe 
1010 kaon decays, or about 200,000 K→µ𝜈e+e- events, about 
1000 per MeV bin in the mass range we are considering.  
(Thanks to M. Kohl)
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Reminder: new data coming
• New CREMA 

measurements (out at 
conferences, 2013/14) 

• 3 scattering expts. 
underway or coming 

• Electron deuteron 
scattering  
(Griffioen et al., Mainz) 
(data taken)
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• 5 atomic energy level 
measurements 

• TREK at JPARC 

• Maybe also: 
Trumuonium (µ+µ-) at 
JLab

(14 experiments)



Ending
• Remarkable: 6 years after the first announcement, the problem persists. 

• Interestingly little discussion of the correctness of the µ-H Lamb shift data. 

• Serious and good new data coming. 

• Opinion: Either 

• All radii correct, and BSM—muonic specific force—is explanation despite 
problems, or 

• The electron based radius measurements will reduce to the muonic value. 

• Comment: the theory for (g-2)µ cannot be considered settled until the proton 
radius problem is settled.  Further, there may be striking corrections to other 
processes that involve muons.
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The end for now!


